Design and validation of an academic cyberloafing scale in university students
Main Article Content
Abstract
The accelerated adoption of technologies in education has driven academic interest in cyberloafing, exploring its impact on student behavior related to the use of the Internet during classes. This paper aims to design and validate an academic cyberloafing scale in Argentine university students. An exploratory factor analysis (EFA) was performed using polychoric correlations. The sample consisted of 310 university students from Argentina. Kaiser-Meyer-Olkin adequacy index = .780 and Bartlett’s test of sphericity x² =3428.9, p<.00001 were calculated. For the EFA, the unweighted least squares (ULS) method was applied with a Promin rotation method, and a four-factor solution was chosen, which explained 69% of the variance (daily life 43%, exchange 10%, work 9% and education 7%). Ordinal α was calculated for each factor: daily life = .928, education = .956, work = .925 and exchange = .945. The constant transformations in the field of technologies raise the challenge of making updated psychometric adaptations that reflect current behaviors. It is recommended that future lines of research confirm the proposed factorial structure, consider the impact of new behaviors linked to technology such as artificial intelligence and focus on Latin American populations.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors transfer the publication rights to the journal in all its formats and digital media.
Regarding Copyright CC BY-NC-SA 4.0, this journal is under a license of https://creativecommons.org/licenses/by-nc-sa/4.0/.
You are free to:
Share: copy and redistribute the material in any medium or format
Adapt: remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
1. Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
2.Non-Commercial:You may not use the material for commercial purposes.
3. ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
4.No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or when your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not grant you all the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
LEGAL CODE CC BY-NC-SA 4.0
References
Ajzen, I., & Fishbein, M. (1985). From intentions to actions: a theory of planned behavior. En J. Hugland & J. Beckman (Eds.), Action control: From cognitions to behavior (pp. 11-39). Springer
Akbulut, Y., Dönmez, O., & Dursun, Ö. Ö. (2017). Cyberloafing and social desirability bias among students and employees. Computers in Human Behavior, 72, 87–95. https://doi.org/10.1016/j.chb.2017.02.043
Akbulut, Y., Dursun, Ö. Ö., Dönmez, O., & Şahin, Y. L. (2016). In search of a measure to investigate cyberloafing in educational settings. Computers in Human Behavior, 55, 616–625. https://doi.org/10.1016/j.chb.2015.11.002
Álvarez Garcia, E., Lopez Sintas, J., & Samper Martínez, A. (2012). Retos y tendencias del ocio digital: Transformación de dimensiones, experiencias y modelos empresariales. Arbor Ciencia, Pensamiento y Cultura, 188(754), 395–407. https://doi.org/10.3989/arbor.2012.754n2011
Baglin, J. (2014). Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR. Practical Assessment, Research and Evaluation, 19(5), 1–15. https://bit.ly/3DPxx99
Blanchard, A. L., & Henle, C. A. (2008). Correlates of different forms of cyberloafing: the role of norms and external locus of control. Computers in Human Behavior, 24(3), 1067–1084. https://doi.org/10.1016/j.chb.2007.03.008
Blau, G., Yang, Y., & Ward-Cook, K. (2006). Testing a measure of cyberloafing. Journal of Allied Health, 35(1), 9–17. https://bit.ly/3fKbs3H
Brenlla, M., Aranguren, M., Rossaro, M., & Vázquez, N. (2010). Adaptación para Buenos Aires de la Escala de Autoeficacia General. Interdisciplinaria, 27(1), 77-94. https://bit.ly/3DJQASd
Cáceres Zapatero, M. D., Brändle Señán, G., & Ruiz San Román, J. A. (2017). Sociabilidad virtual: La interacción social en el ecosistema digital. Historia y Comunicación Social, 22(1), 233–247. https://doi.org/10.5209/HICS.55910
Demirtepe-Saygılı, D., & Metin-Orta, I. (2021). An investigation of cyberloafing in relation to coping styles and psychological symptoms in an educational setting. Psychological Reports, 124(4), 1559–1587. https://doi.org/10.1177/0033294120950299
Dery, K., Kolb, D., & MacCormick, J. (2014). Working with connective flow: How smartphone use is evolving in practice. European Journal of Information Systems, 23(5), 558–570. https://doi.org/10.1057/ejis.2014.13
Dominguez-Lara, S. (2018). Fiabilidad y alfa ordinal. Actas Urológicas Españolas, 42(2), 140–141. https://doi.org/10.1016/j.acuro.2017.07.002
Ferrando, P. J., & Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles Del Psicólogo, 31(1), 18–33. https://www.papelesdelpsicologo.es/pdf/1793.pdf
Ferrando, P. J. & Lorenzo-Seva, U. (2014). El análisis factorial exploratorio de los ítems: algunas consideraciones adicionales. Anales de Psicología, 30(3), 1170–1175. https://doi.org/10.6018/analesps.30.3.199991
Ferrando, P. J., Lorenzo-Seva, U., Hernández-Dorado, A., & Muñiz, J. (2022). Decálogo para el análisis factorial de los ítems de un test. Psicothema, 34(1), 7–17. https://doi.org/10.7334/psicothema2021.456
Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling: A Multidisciplinary Journal, 16(4), 625–641. https://doi.org/10.1080/10705510903203573
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23(2), 267–269. https://doi.org/10.1207/s15327906mbr2302_9
Freiberg Hoffmann, A., Stover, J. B., De la Iglesia, G., & Fernández Liporace, M. (2013). Correlaciones policóricas y tetracóricas en estudios factoriales exploratorios y confirmatorios. Ciencias Psicológicas, 21(2), 151–164. https://doi.org/10.22235/cp.v7i1.1057
Gerow, J. E., Galluch, P. S., & Thatcher, J. B. (2010). To slack or not to slack: internet usage in the classroom. Journal of Information Technology Theory and Application, 11(3), 5–24. https://bit.ly/3UF06wR
Gökçearslan, Ş., Mumcu, F. K., Haşlaman, T., & Çevik, Y. D. (2016). Modelling smartphone addiction: the role of smartphone usage, self-regulation, general self-efficacy and cyberloafing in university students. Computers in Human Behavior, 63, 639–649. https://doi.org/10.1016/j.chb.2016.05.091
Gökçearslan, Ş., Uluyol, Ç., & Şahin, S. (2018). Smartphone addiction, cyberloafing, stress and social support among university students: a path analysis. Children and Youth Services Review, 91, 47–54. https://doi.org/10.1016/j.childyouth.2018.05.036
Gombert, L., Konze, A.-K., Rivkin, W., & Schmidt, K.-H. (2018). Protect your sleep when work is calling: How work-related smartphone use during non-work time and sleep quality impact next-day self-control processes at work. International Journal of Environmental Research and Public Health, 15(8), 1–15. https://doi.org/10.3390/ijerph15081757
Hogan, T. P. (2015). Pruebas psicológicas. Una introducción práctica (2° Ed.). Manual Moderno.
Jerusalem, M. & Schwarzer, R. (1992). Self-efficacy as a resource factor in stress appraisal process. En R. Schwarzer (Ed.), Self-efficacy: Thought control of action (pp. 195-211). Hemisphere.
Kalaycı, E. (2010). Üniversite öğrencilerinin siber aylaklık davranışları ile öz düzenleme stratejileri arasındaki ilişkinin incelenmesi [Investigación de la relación entre cyberloafing y estrategias de aprendizaje autorregulado en estudiantes de pregrado] [Tesis de doctorado no publicada]. Universidad Hacettepe. http://bit.ly/3NKNKks
Koay, K.-Y. (2018). Assessing cyberloafing behavior among university students: A validation of the cyberloafing scale. Pertanika Journal of Social Sciences and Humanities, 26(1), 409–424. https://bit.ly/3UF0taJ
Leibovich de Figueroa, N. B. (1991). Ansiedad: algunas concepciones teóricas y su evaluación. En M. M. Casullo, N. B. Leibovich de Figueroa & M. Aszkenazi (Eds.), Teoría y técnicas de evaluación psicológica (pp. 123-155). Psicoteca.
Li, Q., Xia, B., Zhang, H., Wang, W., & Wang, X. (2022). College students’ cyberloafing and the sense of meaning of life: The mediating role of state anxiety and the moderating role of psychological flexibility. Frontiers in Public Health, 10, 1–10. https://doi.org/10.3389/fpubh.2022.905699
Lim, V. K. G. (2002). The IT way of loafing on the job: Cyberloafing, neutralizing and organizational justice. Journal of Organizational Behavior, 23(5), 675–694. https://doi.org/10.1002/job.161
Lim, V. K. G. & Teo, T. S. H. (2022). Cyberloafing: A review and research agenda. Applied Psychology, 1–44. https://doi.org/10.1111/apps.12452
Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151–1169. https://doi.org/10.6018/analesps.30.3.199361
Lorenzo-Seva, U., & Ferrando, P. J. (2019). Robust Promin: A method for diagonally weighted factor rotation. Liberabit: Revista Peruana de Psicología, 25(1), 99–106. https://doi.org/10.24265/liberabit.2019.v25n1.08
Martínez-Fernández, J. R., & Vermunt, J. D. (2015). A cross-cultural analysis of the patterns of learning and academic performance of Spanish and Latin-American undergraduates. Studies in Higher Education, 40(2), 278–295. https://doi.org/10.1080/03075079.2013.823934
Metin-Orta, I., & Demirtepe-Saygılı, D. (2023). Cyberloafing behaviors among university students: Their relationships with positive and negative affect. Current Psychology, 42(13), 11101–11114. https://doi.org/10.1007/s12144-021-02374-3
McBride, J., Milligan, J., & Nichols, J. (2006). Who’s teaching the kids? Cyberslacking in the classroom. Journal of College and Character, 7(1), 1–6. https://doi.org/10.2202/1940-1639.1500
Montero, I., & León, O. G. (2007). A guide for naming research studies in psychology. International Journal of Clinical and Health Psychology, 7(3), 847–862. https://bit.ly/3teyumg
Muñiz, J., & Fonseca-Pedrero, E. (2019). Diez pasos para la construcción de un test. Psicothema, 31(1), 7–16. https://doi.org/10.7334/psicothema2018.291
Ozler, D. E., & Polat, G. (2012). Cyberloafing phenomenon in organizations: Determinants and impacts. International Journal of EBusiness and EGovernment Studies, 4(2), 1–15. https://sobiad.org/eJOURNALS/journal_IJEBEG/arhieves/2012_2/derya_ergun.pdf
Pérez, E. R., & Medrano, L. (2010). Análisis factorial exploratorio: Bases conceptuales y metodológicas. Revista Argentina de Ciencias Del Comportamiento, 2(1), 58–66. http://bit.ly/3hnQQyL
Pérez Pelea, L. (2019). Valores atípicos en los datos, ¿cómo identificarlos y manejarlos? Revista Del Jardín Botánico Nacional, 40, 99–107. https://www.jstor.org/stable/26937051
Polat, M. (2018). Derslerde akıllı telefon siber aylaklığı ölçeği (DATSAÖ): Üniversite öğrencileri için bir ölçek uyarlama çalışması [The smartphone cyberloafing scale in classes (SPCSC): Un estudio de adaptación de la escala para estudiantes universitarios]. Social Sciences Studies Journal, 4(21), 3114–3127. https://bit.ly/3NJg72k
Prasad, S., Lim, V. K., & Chen, D. J. (2010). Self-Regulation, Individual Characteristics and Cyberloafing. PACIS 2010 Proceedings, 159. http://aisel.aisnet.org/pacis2010/159
Rodríguez Campoverde, D., Peña Holguín, R. R., & Stracuzzi Pastor, M. S. (2020). Impacto e inclusión de las TIC en los estudiantes de educación básica, retos, alcance y perspectiva. Atlante. Cuadernos de Educación y Desarrollo. https://www.eumed.net/rev/atlante/2020/08/inclusion-tics.html
Rueda Delgado, J. P., Flores Mejía, J. G. & Velázquez Gatica, B. (2020). Multitarea con dispositivos digitales en estudiantes universitarios. En: Colomo Magaña, E., Sánchez Rivas, E., Ruiz Palmero, J. & Sánchez Rodríguez, J. (Eds.), La tecnología como eje del cambio metodológico (pp. 1778-1781). Universidad de Málaga.
Salas, R., Ledesma, L., Domínguez, E. (2024). Ciencia de datos para analizar el aula inver-tida en el proceso educativo de geografía. Revista Ecos de la Academia, 10(20): e1157, 1-19. https://doi.org/10.53358/ecosacademia.v10i20.1157
Sarıtepeci, M., & Sert, U. (2021). Cyberloafing level of university students: a scale development study. Research on Education and Psychology (REP), 5(1), 41–52. https://bit.ly/3tfDZ49
Sivrikova, N., Roslyakova, S., Sokolova, N., & Moiseeva, E. (2019). Assessing of use of the internet for personal reasons at lessons at school: a validation of the cyberloafing scale. SHS Web of Conferences, 70, 1–6. https://doi.org/10.1051/shsconf/20197006010
Spielberger, C. D., Gorsuch, R., & Lushene, R. (1970). Manual for the State-Trait Anxiety Inventory. Consulting Psychologist Press.
Taneja, A., Fiore, V., & Fischer, B. (2015). Cyber-slacking in the classroom: Potential for digital distraction in the new age. Computers and Education, 82, 141–151. https://doi.org/10.1016/j.compedu.2014.11.009
Tornimbeni, S., Pérez, E. & Olaz, F. (2008). Introducción a la psicometría. Paidós.
Viladrich, C., Torregrosa, M., & Cruz, J. (2011). Calidad psicométrica de la adaptación española del cuestionario de regulación conductual en el deporte. Psicothema, 23(4), 786–794. https://bit.ly/3hnRCvF
Wakefield, R. L., & Whitten, D. (2006). Mobile computing: A user study on hedonic/utilitarian mobile device usage. European Journal of Information Systems, 15(3), 292–300. https://doi.org/10.1057/palgrave.ejis.3000619
Wu, J., Mei, W., & Ugrin, J. C. (2018). Student Cyberloafing in and out of the Classroom in China and the Relationship with Student Performance. Cyberpsychology, Behavior, and Social Networking, 21(3), 199–204. https://doi.org/10.1089/cyber.2017.0397
Wu, J. N., Song, M., Ugrin, J. C., Liu, L., & Zhu, T. (2021). Cyberloafing research 1997-2019: a citation-based literature review. Organizacija, 54(2), 98–111. https://doi.org/10.2478/orga-2021-0007
Yaşar, S. (2013). Üniversite öğrencilerinin denetim odağı ve bilgisayar laboratuvarına yönelik tutumlarının siberaylaklık davranışlarına etkisi [Los efectos del locus de control y las actitudes de los estudiantes hacia el laboratorio de computación en su comportamiento de cyberloafing]. [Tesis de Maestría, Universidad Hacettepe]. https://bit.ly/3TcoMeR
Yılmaz, R., & Yurdugül, H. (2018). Cyberloafing in IT classrooms: exploring the role of the psycho-social environment in the classroom, attitude to computers and computing courses, motivation and learning strategies. Journal of Computing in Higher Education, 30(3), 530–552. https://doi.org/10.1007/s12528-018-9184-2